Disinfection by-products (DBPs) refer to chemical substances that are unintentionally produced by means of a reaction between the disinfectant and naturally occurring organic matters in drinking water. The common DBPs include halogenated compounds (e.g., trihalomethanes (THMs), haloacetic acids (HAAs), and others), inorganic oxyhalides (e.g., bromate, chlorite and chlorate), perchlorate, and so on.
Many of these by-products are toxic and some of them are considered as carcinogenic or mutagenic for human bodies, even at trace concentrations. Therefore, it is necessary to test disinfection by-products in drinking water to eliminate these detrimental products, and to ensure the health and safety of people.
Lifeasible is equipped with an excellent food testing laboratory with rich experience in disinfection by-products testing. We provide state-of-the-art technologies for determining the content of all types of DBPs mentioned above. The analysis of DBPs is traditionally performed by ion chromatography (IC), which separates ions and polar molecules based on their affinity to the ion exchanger. Typically, the compounds are separated by the IC column and can be detected by different detection systems, including:
At Lifeasible, our excellent experts are committed to developing methods complying with the regulations of the international standardization organization (ISO), the US EPA, and the American society for testing and materials (ASTM). We will provide you with customized protocols adapting to your specific requirements. Working closely with Lifeasible, you will obtain fast, accurate, and reliable DBPs testing results. Welcome to contact us for inquiries, collaborations, and more information.
Lifeasible has established a one-stop service platform for plants. In addition to obtaining customized solutions for plant genetic engineering, customers can also conduct follow-up analysis and research on plants through our analysis platform. The analytical services we provide include but are not limited to the following:
July 13, 2024